11 класс

Задача №11-Е1. Внутренний объем трубки

Для начала увеличим точность шкалы шприца объемом 20 мл, для этого приклеим к нему бумажную шкалу, совместив 0 шкалы шприца с основным делением бумажной шкалы. Определим цену деления приклеенной шкалы используя деления 0 и 20 мл на шкале шприца. При дальнейших измерениях будем пользоваться наклеенной шкалой. Выдвинем поршень шприца 20 мл до отметки V_1 . Поршень шприца 5 мл вдвинем до упора в крайнее положение. Обратите внимание, что при перемещении поршня этого шприца в крайнее положение ощущается (даже слышен!) легкий толчок («щелчок»). Он объясняется тем, что в этом месте внутренний диаметр шприца на небольшом участке немного увеличен и поршень как бы «фиксируется» в этом положении. Для того, чтобы начать выдвигать поршень из этой точки, необходимо приложить некоторое «избыточное» усилие, которое как следует из дальнейших экспериментов с хорошей точностью является постоянным. Соединим шприцы с помощью прозрачной трубки, плотно надев ее на носик каждого шприца. Начнем плавно вдвигать поршень большого шприца до момента, когда поршень малого шприца под действием избыточного давления в трубке «выскочит» из крайнего положения и тоже придет в движение. Определим объем V_2 большого шприца, при котором это происходит. Пусть поршень в малом шприце приходит в движение при давлении в трубке, превышающем атмосферное давление P_0 на величину ΔP . Тогда по закону Бойля-Мариотта

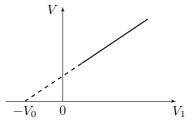
$$P_0(V_1 + V_0) = (P_0 + \Delta P)(V_2 + V_0).$$

Здесь за V_0 обозначен внутренний объем трубки. После преобразований

$$V_1 - V_2 = \frac{\Delta P}{P_0 + \Delta P} (V_1 + V_0).$$

Если теоретическая модель верна, то при построении графика зависимости величины $\Delta V = V_1 - V_2$ от V_1 мы должны получить линейную зависимость, причем продолжение прямой $\Delta V(V_1)$ будет пересекать ось V_1 в точке $V_1 = -V_0$ (см. рисунок).

Для повышения точности каждый опыт проведем три раза с последующим усреднением результатов.

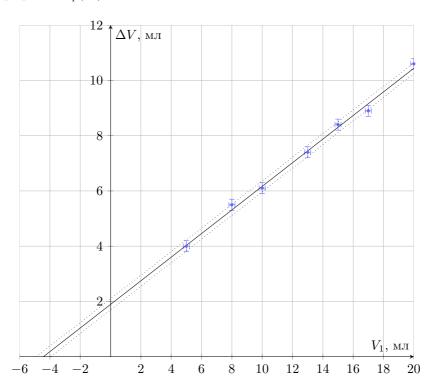


$$\Delta V_{\rm cp} = V_1 - \frac{V_{2_1} + V_{2_2} + V_{2_3}}{3}$$

Экспериментальные данные

V_1 , мл	V_{2_1} , мл	V_{2_2} , мл	V_{2_3} , мл	$\Delta V_{ m cp}$, мл
20.0	9.5	9.3	9.5	10.6
17.0	8.0	8.2	8.0	8.9
15.0	6.5	6.5	6.7	8.4
13.0	5.7	5.5	5.5	7.4
10.0	4.0	3.7	4.0	6.1
8.0	2.5	2.5	2.5	5.5
5.0	1.0	1.0	1.0	4.0

График $\Delta V_{\rm cp}(V_1)$.



Продолжение графика до пересечения с осью абсцисс позволяет определить значение $V_0 \approx 4.5\,$ мл.

Оценим погрешность. Погрешность измерения объема равна цене деления $\Delta_V \approx 0.2$ мл. Из серии измерений видно, что разброс значений укладывается в приборную погрешность, то есть $\Delta_{V\,\mathrm{приб}} \approx \Delta_{V\,\mathrm{случ}}.$

Тогда

$$\Delta_{V ext{полн}} = \sqrt{\left(rac{\Delta_{V ext{при6}}}{3}
ight)^2 + \Delta_{V ext{c.луч}}^2} pprox \Delta_{V ext{при6}} = 0.2 \; ext{мл}$$

Для оценки погрешности V_0 проведем две вспомогательные прямые, проходящие через края крестов ошибок и показывающие допустимое отклонение в V_0 .

$$\Delta V_0 = rac{V_{0\mathrm{marc}} - V_{0\mathrm{muh}}}{2} = rac{5.0 - 3.8}{2} = 0.6$$
 мл

Окончательный результат $V_0 = (4.5 \pm 0.6)$ мл.

Задача №11-Е2. Колебания кольца

В таблице приведены результаты измерений периода колебаний кольца при различных массах груза. В качестве груза использовались гайки, который закреплялись на внутренней поверхности кольца с помощью небольшой полоски скотча.

М8, шт	. М10, п	т m , г	N	t_1 , c	t_2 , c	t_3 , c	t_4 , c	t_5 , c	$T_{\rm cp}$, c
1	0	4.5	5	8.84	9.04	9.28	9.06	9.24	1.82
0	1	10.2	5	6.36	6.49	6.57	6.60	6.30	1.29
0	2	20.4	10	9.30	9.50	9.22	9.38	9.42	0.94
0	3	30.6	10	7.77	7.76	7.81	7.81	7.90	0.78
0	4	40.8	10	6.70	6.85	6.87	6.87	6.98	0.69
0	6	61.2	10	5.85	5.62	5.75	5.77	5.78	0.58
0	10	102.0	10	4.75	4.70	4.63	4.72	4.64	0.47

При повороте кольца относительно положения равновесия на угол φ потенциальная энергия груза увеличивается на $\Delta E_{\rm II} = mgR(1-\cos\varphi)$. При малых $\varphi\cos\varphi\approx 1-\frac{\varphi^2}{2}$. Отсюда $\Delta E_{\rm II}\approx mgR\frac{\varphi^2}{2}$. При малых колебаниях кинетической энергией груза можно пренебречь, так как его скорость составляет величину порядка $R\varphi\dot{\varphi}$, соответственно его кинетическая энергия — величина порядка $\frac{mR^2(\varphi\dot{\varphi})^2}{2}$ — много меньше кинетической энергии всего кольца $E_{\rm K}=MR^2\dot{\varphi}^2$. Закон сохранения энергии при колебаниях

$$MR^2\dot{\varphi}^2 + mgR\frac{\varphi^2}{2} = \text{const.}$$

Отсюда

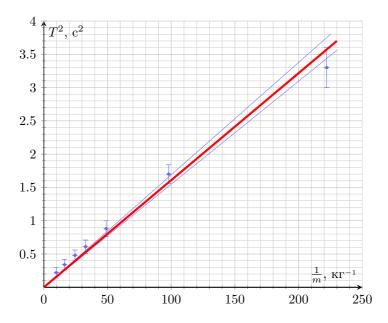
$$T = 2\pi \sqrt{\frac{2MR}{mg}}.$$

Из полученного в п.2 выражения $T=Am^{-0.5},$ где $A=2\pi\sqrt{\frac{2MR}{g}},$ после возведения в квадрат получаем

$$T^2 = \frac{8\pi^2 MR}{q} \cdot \frac{1}{m}.$$

При соответствии экспериментальных данных этой теоретической модели зависимость $T^2\left(\frac{1}{m}\right)$ должна быть линейной с угловым коэффициентом $k=\frac{8\pi^2MR}{g}$. Результаты такой обработки экспериментальных данных представлены в таблице и на графике.

T^2 , c^2	3.3	1.7	0.88	0.61	0.48	0.34	0.22
m^{-1} , $\kappa \Gamma^{-1}$	$^{-1}222$	98	49	32.8	24.5	16.3	9.8



Погрешность определения значения T^2 оценим как $\Delta(T^2)=2T\Delta T$, где $\Delta T=\sqrt{(\Delta T_{\rm chct})^2+(\Delta T_{\rm ch})^2}$. Величину $\Delta T_{\rm chct}$ считаем равной $\frac{\Delta t}{N}\approx 0.05$ с (Δt — погрешность определения времени 10 колебаний), случайная погрешность данных много меньше $\Delta T_{\rm ch}\ll \Delta T_{\rm chct}$. График зависимости $T^2(\frac{1}{m})$ с учетом погрешности T^2 представлен на рисунке. Определенное по графику значение углового коэффициента $k=0.16\pm0.01$ кг·с². Отсюда масса пластмассового кольца $M=36\pm2$ г.