7 класс Теоретический тур

Задача №7-Т1. В ванной

Пусть длинная сторона плитки имеет размер a, а короткая — b. Поскольку плитку резали только у стены с дверным проёмом, по рисунку можно найти соотношение между a и b. На 4 длинных стороны плитки приходится 10 коротких сторон (коврик перед унитазом может закрывать только одну целую плитку, поскольку его ширина равна 2b). То есть

$$\frac{a}{b} = \frac{10}{4} = \frac{5}{2}.$$

Улитка из A до встречи должна пройти путь 3a, улитка из B – путь (a+7b). Значит условие встречи можно записать в виде уравнения:

$$\frac{a+7b}{u} - \frac{3a}{u} = \Delta t.$$

С учетом того, что a = 2.5b, получаем:

$$b = \frac{u\Delta t}{2} = \frac{1}{2} \cdot 12 \cdot \frac{200}{60} \text{ cm} = 20 \text{ cm}.$$
 $a = 2.5b = 50 \text{ cm}.$

Теперь, зная размеры одной плитки, можно посчитать и площадь всей ванной комнаты, разбив её на простые части (например, на прямоугольники и прямоугольные треугольники с известными сторонами):

$$S = 4a(a+9b) + 11ab + \frac{5}{2}ab = 4a^2 + 49.5ab = 5.95 \text{ m}^2.$$

PS: Разбиение на площади может быть и другим, соответственно формула может быть другой (например, S=59.5ab). Но ответ, конечно, при этом измениться не должен.

Задача №7-Т2. Стадион МФТИ

Эффективная длина круга первой дорожка складывается из двух прямолинейных участков и двух дуг половинок окружностей.

$$L_1 = 2\pi R_1 + 2l \approx 400 \text{ M}.$$

Длины дорожек имеют различия только на криволинейных участках. Для первой и второй дорожек на трёх кругах разность длин:

$$\Delta l_{12} = 3(L_2 - L_1) = 3(2\pi(R_1 + d) - 2\pi R_1) = 6\pi d \approx 23 \text{ M}.$$

Легко заметить, что:

$$\Delta l_{12} = \Delta l_{23} = \Delta l_{34} = 6\pi d \approx 23 \text{ M}.$$

Для расчёта средней скорости на дистанции 2400 м нельзя точно определить время. Например, показание часов 13:00 может соответствовать любому моменту от 13:00:00 до 13:00:59:99... Тогда время забега атлета принадлежит интервалу от 12 до 14 минут. Эти границы позволяют найти наименьшее и наибольшее значения средней скорости.

$$v_{\min} = \frac{2400 \text{ m}}{14 \cdot 60 \text{ c}} \approx 2.86 \text{ m/c}, \quad v_{\min} = \frac{2.4 \text{ km} \cdot 60}{14 \text{ q}} \approx 10.3 \text{ km/q};$$

$$v_{\max} = \frac{2400 \text{ m}}{12 \cdot 60 \text{ c}} \approx 3.33 \text{ m/c}; \quad v_{\max} = \frac{2.4 \text{ km} \cdot 60}{12 \text{ q}} \approx 12 \text{ km/q}.$$

Задача №7-Т3. Шоколад и карамель

Запишем формулу средней плотности:

$$\rho = \frac{m_1 + m_2}{V_1 + V_2}.$$

Найдём массу шоколада $m_1=\rho_1V_1=\rho_1\cdot 0.6V_1$, объём карамели $V_2=\mu_2t$, массу карамели $m_2=\rho_2V_2=\rho_2\mu t$.

После подстановки получим:

$$1.1\rho_1 = \frac{0.6\rho_1 V + \rho_2 \mu t}{0.6V + \mu t}.$$

Выразим и найдём время

$$t = rac{0.6V \cdot 0.1V}{\mu(
ho_2 - 1.1
ho_1)} = 9.6$$
 мин.

Проверим возможность ответа:

$$V_2 = \mu t = 0.60 \frac{\pi}{\text{мин}} \cdot 9.6 \text{ мин} = 5.76 \text{ л} < 6.4 \text{ л} = 0.4V.$$

Т.е. карамель не выливалась!

Задача №7-Т4. Догонялки

Введём обозначения: T_1 — всё время в пути первого автомобиля, T_2 — всё время в пути второго автомобиля, τ_2 — время движения второго автомобиля до остановки. Согласно условию задачи:

$$T_1 = \tau_2 + \Delta t;$$

$$T_2 = t_2 = 14$$
 мин.

Из графика (точка излома): $\tau_2=2$ мин. В течении этого времени расстояние между автомобилями меняется с относительной скоростью (v_1-v_2) . За 2 минуты оно станет равным (из графика) $S_1=1.2$ км. Получаем первое уравнение связи скоростей:

$$S_1 = (v_1 - v_2)\tau_2.$$

После этого из графика видно, что за следующие 2 минуты первый автомобиль уехал от стоящего второго ещё на

$$S_2 = 4.2 \text{ km} - 3.2 \text{ km} = 3 \text{ km}.$$

Это нам позволяет найти скорость первого автомобиля:

$$v_1 = \frac{3 \text{ km}}{2 \text{ мин.}} = 1.5 \text{ km/мин.}$$

тогда из уравнения для связи скоростей можно найти скорость второго автомобиля:

$$v_2 = 1.5 \frac{\mathrm{KM}}{\mathrm{Muh.}} - \frac{1.2 \mathrm{KM}}{2 \mathrm{Muh.}} = 0.9 \mathrm{Km/мuh.}$$

Теперь запишем формулы для расчёта пути из A в B:

$$L = v_1 T_1 = v_1 (\tau_2 + \Delta t);$$

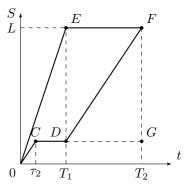
$$L = v_2(T_2 - \Delta t).$$

Приравняем правые части уравнений и найдём время остановки:

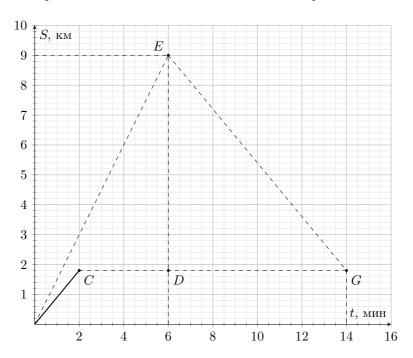
$$\Delta t = rac{v_2 T_2 - v_1 T_1}{v_1 + v_2} = 4$$
 мин.

Также Δt можно найти графически. На рисунке качественно показан график движения автомобилей. Рассмотрим построение графика согласно условию задачи.

Известно, что первый автомобиль едет быстрее второго (угловой коэффициент прямой OE больше, чем у прямой OC) с постоянной скоростью v_1 вплоть до пункта B (точка E), а затем останавливается (участок EF). Второй автомобиль некоторое время движется с постоянной скоростью v_2 (участок OC), останавливается (участок CD), и когда первый автомобиль достигает пункта B, вновь продолжает движение (точка D) с той же скоростью v_2 (угловые



коэффициенты прямых OC и DF совпадают). В момент времени $t_2=14$ мин. автомобили поравнялись (точка F). Зная скорости автомобилей и время движения второго до остановки, можно определить положение точки G и провести через неё прямую GE с угловым коэффициентом $-v_2$ до пересечения с графиком движения первого автомобиля. На рисунке ниже показано это построение. Время остановки второго автомобиля 4 мин легко найти из построения.



Теперь можно найти длину пути:

$$L = v_2(T_2 - \Delta t) = 9$$
 км.

Если решать с использованием графика, то из построения также легко найти расстояние между пунктами A и B-9 км.